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Abstract
We compute the two-loop MS correction to the Gribov mass gap equation in the
Landau gauge using the Gribov–Zwanziger Lagrangian with massive quarks
included. The computation involves dilogarithms of complex arguments and
reproduces the known gap equation when the quark mass tends to zero.

PACS numbers: 11.10.Gh, 12.38.Aw

1. Introduction

The quantum field theory underlying the strong nuclear force is quantum chromodynamics
(QCD). It is an extension of quantum electrodynamics (QED) where the gauge fields are
required to be elements of a non-Abelian colour group, SU(3), as opposed to the Abelian
U(1) of electric charge. Whilst this is a simple mathematical generalization, the properties
of the Yang–Mills field theory are significantly different. Clearly, QCD is asymptotically free
which is not unrelated to the fact that the basic fields analogous to electrons correspond to
particles which are never isolated in nature, called quarks. They are held together in pairs or
triplets by the quanta of the strong force called gluons. Equally, these have never been seen
isolated in experiments but rather at high energy they are effectively massless asymptotically
free fields which to all intents and purposes behave as massless fundamental particles. To
a degree, this behaviour is parallel to the properties of the photons and electrons of QED.
However, both fundamental forces differ in behaviour in the infrared region. For instance, in
QCD infrared slavery dominates the confinement picture and the gluon propagator does not
have the behaviour of a massless fundamental particle. One situation where this property can
be manifestly seen is in Gribov’s construction of the gluon propagator at low energy in the
Landau gauge [1]. An additional divergence in the structure of QED and QCD emanates from
the way one tries to fix a (linear) covariant gauge. In QED, one can fix the gauge in a global
sense. By contrast, Gribov pointed out [1] that in Yang–Mills theory, the covariant gauge
condition for the Landau gauge has an ambiguity. This occurs at zeros of the Faddeev–Popov
operator when different gauge configurations satisfy the same gauge fixing condition. In a local
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region in the neighbourhood of the origin of configuration space, where perturbation theory is
valid, there is no such ambiguity and standard perturbative calculations are perfectly adequate
to describe ultraviolet behaviour. However, to properly fix the gauge globally the problem of
Gribov copies must be taken into account in defining the path integral of the theory [1]. Gribov
achieved this by restricting the path integral to the region of configuration space containing
the first Gribov region, denoted by �. This is defined to be the region containing the origin
where the Faddeev–Popov operator, M(A) ≡ −∂μDμ(A), is strictly positive. Consequently,
the path integral is cutoff and a natural mass parameter, γ , called the Gribov mass emerges
[1]. It is not an independent parameter of Yang–Mills but is non-perturbative and satisfies
a gap equation. In turn, this gap equation derives from the restriction of the path integral
to � by the no-pole condition [1]. In other words, the average of 1/M(A) over � is finite.
This construction radically alters the infrared properties of the theory. For instance, it leads
to a gluon propagator which is not fundamental in the sense that it has no (real) pole [1].
Moreover, it is suppressed in the infrared since it vanishes in the infrared limit. Further, the
gap equation implies that the propagator of the Faddeev–Popov ghost is not fundamental but
has a dipole behaviour at low momenta which is referred to as ghost enhancement. These
infrared properties of the constituent fields are believed to be related to confinement [1], and
over the years have led to intense interest in studying gluon and ghost two-point functions on
the lattice and with Dyson Schwinger equation (DSE) methods.

Another approach was also developed, however, in a series of articles by Zwanziger
and collaborators [2–10], with other relevant contributions in, for instance, [11, 12]. In
essence, the semi-classical approach of Gribov for Landau gauge Yang–Mills was put on a
firmer footing with the construction of a localized renormalizable Lagrangian [3, 4, 7, 8],
the renormalizability being established by various authors [8, 13, 14]. The implementation
of the horizon condition defining � in the original approach led to a non-local operator in
the action which clearly inhibits direct calculations. In [3, 4, 7, 8], Zwanziger localized
the non-locality with a (finite) set of extra fields which defined the horizon condition in an
equivalent fashion. The beauty of the renormalizability [8, 13, 14], aside from allowing for
calculations was to demonstrate that none of the known and accepted properties of QCD at
high energy were changed or upset. For instance, asymptotic freedom remains with the same
β-function. However, the advantage of the new formulation was to allow for loop calculations
and the extension to the next level of computation of the gap equation, gluon suppression and
ghost enhancement. This was achieved in [15] and [16]. In the former, the two-loop MS
gap equation for γ was established when massless quarks are present. This was checked in a
non-trivial way by verifying that ghost enhancement was satisfied at two loops precisely when
γ obeyed the gap equation. Indeed the theory has no meaning as a gauge theory unless γ does
this and hence is not an independent parameter of the theory [1]. In the latter article [16], the
one-loop gluon suppression was verified as well as the exact evaluation of all the one-loop
two-point functions of the fields of the Gribov–Zwanziger Lagrangian.

Given this background, we come to the main purpose of this paper. Clearly, in the real
world quarks are not massless but massive. Therefore, to have a more realistic understanding
of the Gribov situation it seems appropriate to include massive quarks. As will be evident from
what is recorded here, this is far from a trivial task. First, quarks only appear diagrammatically
in the gap equation at two loops. Moreover, this results in Feynman integrals involving three
scales. Aside from the quark mass itself, the gluon propagator actually has two mass scales
in the sense of a conventional fundamental propagator. These are ±i

√
CAγ 2 where the mass

is actually imaginary. (The presence of
√

CA stems from our conventions which follow those
derived in [15, 16].) The presence of the imaginary mass further complicates Feynman integral
evaluation since some of the fundamental functions of one- and two-loop integrals, such as
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dilogarithms, need to be considered for complex arguments. Therefore, it is the main purpose
of this paper to extend the massless quark two-loop MS gap equation of [15] to the massive
quark case. Moreover, we will discuss the effect it has on the enhancement of the Faddeev–
Popov ghost. Finally, we note that given recent developments concerning the scaling versus
decoupling solutions [17–22], for which there has yet to be a definitive resolution, we note
that our computations will be the foundation for extensions to the decoupling gap equation.
This will be required if that solution is eventually established as the correct picture. Moreover,
this is possible in our approach because the decoupling solution can be accommodated in the
Gribov–Zwanziger formulation [23, 24]. Though it will in fact be a more difficult task than
the current work due to the generation of mass for the localizing Zwanziger ghost fields.

The paper is organized as follows. Section 2 is devoted to reviewing the relevant aspects
of the Gribov–Zwanziger formalism for the massive quark two-loop gap equation. The
construction of the two-loop scalar master integrals to the finite part is presented in section 3
where we discuss at length their expression in terms of functions of real variables. This is
necessary in order to produce a real gap equation rather than a form which has functions of
complex variables due to the gluon widths. Our main result is provided in section 4 whilst we
draw our conclusions in section 5.

2. Formalism

In this section, we recall the relevant aspects of the basic Gribov–Zwanziger Lagrangian we
will use to extend the results of [15]. From [3, 4, 7, 8], the (bare) Lagrangian is

LGZ = LQCD + φ̄abμ∂ν(Dνφμ)ab − ω̄abμ∂ν(Dνωμ)ab − gf abc∂νω̄ae
μ (Dνc)

bφecμ

+
γ 2

√
2

(
f abcAaμφbc

μ − f abcAaμφ̄bc
μ

)− dNAγ 4

2g2
, (2.1)

where we use the usual linear covariant gauge fixing prescription

LQCD = −1

4
Ga

μνG
aμν − 1

2α

(
∂μAa

μ

)2 − c̄a∂μDμca + iψ̄ iID/ψiI − mqψ̄
iIψiI . (2.2)

Although we will work strictly in the Landau gauge, we have included the usual gauge fixing
parameter α since it is required to derive the gluon propagator. Aside from this, it should
be understood that α is set to zero throughout. Briefly, our conventions in (2.1) and (2.2)
are that Aa

μ is the gluon, ca is the Faddeev–Popov ghost, ψiI is the quark with mass mq and
φab

μ , φ̄ab
μ , ωab

μ and ω̄ab
μ are the Zwanziger localizing ghosts. The latter pair is anti-commuting

like the Faddeev–Popov ghosts whereas φab
μ and φ̄ab

μ are commuting. The Lagrangian is
expressed in d-dimensional spacetime since we will use dimensional regularization throughout
to isolate the divergence structure of the Feynman graphs where d = 4 − 2ε and ε is the
regularizing parameter. The various indices have the ranges 1 � I � Nf , 1 � a � NA and
1 � i � NF , where Nf is the number of quark flavours and NF and NA are the respective
dimensions of the fundamental and adjoint representations. The various covariant derivatives
are

Dμca = ∂μca − gf abcAb
μcc

DμψiI = ∂μψiI + igT a
IJ Aa

μψiJ (2.3)

(Dμφν)
ab = ∂μφab

ν − gf acdAc
μφdb

ν ,

where g is the coupling constant, Ga
μν is the usual gluon field strength and T a are the generators

of the colour group which has structure functions f abc. We note that we have reverted to the
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conventions of the original form of the Lagrangian [4, 8], in the mixed two-point sector1. With
this formulation of the Gribov–Zwanziger Lagrangian, we have checked that the results of the
massless quark gap equation at two loops and Faddeev–Popov ghost enhancement correctly
emerge. The fields φab

μ and φ̄ab
μ correspond to the localization of the Gribov horizon condition

which originally was〈
Aa

μ(x)
1

∂νDν

Aaμ(x)

〉
= dNA

CAg2
(2.4)

and now equates to

f abc
〈
Aaμ(x)φbc

μ (x)
〉 = dNAγ 2

√
2g2

f abc
〈
Aaμ(x)φ̄bc

μ (x)
〉 = −dNAγ 2

√
2g2

.

(2.5)

Our conventions are actually crucial to reproducing the correct form of the gluon propagator
of the original Gribov article [1]. Using other conventions could lead to, for example, a gluon
propagator which has a normal mass as well as a tachyonic mass. From (2.1) and (2.2) we
have checked that the propagators of the fields, with momentum p, are

〈
Aa

μ(p)Ab
ν(−p)

〉 = − δabp2

[(p2)2 + CAγ 4]
Pμν(p)

〈
Aa

μ(p)φ̄bc
ν (−p)

〉 = − f abcγ 2

√
2[(p2)2 + CAγ 4]

Pμν(p)

〈
φab

μ (p)φ̄cd
ν (−p)

〉 = −δacδbd

p2
ημν +

f abef cdeγ 4

p2[(p2)2 + CAγ 4]
Pμν(p)

(2.6)〈
ωab

μ (p)ω̄cd
ν (−p)

〉 = −δacδbd

p2
ημν

〈ca(p)c̄b(−p)〉 = δab

p2

〈ψiI (p)ψ̄jJ (−p)〉 = δij δIJ (p/ + mq)[
p2 + m2

q

]
in the Landau gauge where

Pμν(p) = ημν − pμpν

p2
(2.7)

is the usual projector. We have retained a non-zero α in inverting the matrix of two-
point functions in the quadratic part of the Lagrangian before setting α = 0 to recover
the Landau gauge. The Feynman rules for the vertices have no convention complications
and are straightforward to derive from (2.1) and (2.2). Though we note that the explicit
cubic interaction of (2.1) is completely passive, since it is never present within the Feynman
diagrams contributing to any Green’s function of interest at the two-loop level of this paper.

As (2.1) is renormalizable and incorporates the Gribov properties, we now discuss the
set-up for our computation. The gap equation satisfied by γ is defined by the no-pole condition
determining the boundary of � [1]. In the original approach of [1], this equated to evaluating
the vacuum expectation value of f abcAaμφab

μ and ensuring that it satisfied (2.5) where the

1 In [15, 16], the Feynman rules of this Lagrangian were used within the computer algebra computations though the
actual Lagrangian recorded in the articles followed the conventions of [14].
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right side is a finite object [3, 4, 7, 8]. However, at this point we note that in all the vacuum
expectation values one has to take into account the renormalization of the fields and parameters.
In this respect, we note that the anomalous dimensions of all the quantities we require are
available at three loops in the MS scheme for an arbitrary colour group [13–16]. Further, at
four loops the renormalization of γ is known for the SU(Nc) Lie colour groups [25]. These
follow partly through the renormalizability of (2.1) [8, 13, 14], but also because the localizing
fields and γ do not undergo independent renormalization in the Landau gauge. Instead, all the
renormalization constants are determined by Slavnov–Taylor identities [8, 13, 14]. Denoting
the associated anomalous dimensions of a field or parameter � by γ�(a), where a = g2/(16π2),
then we record the renormalization constants we require as being encoded in the anomalous
dimensions:

γA(a) = [8TFNf − 13CA]
a

6
+
[
40CATFNf + 32CFTFNf − 59C2

A

] a2

8
+ O(a3)

γφ(a) = γω(a) = −3

4
CAa +

[
40CATFNf − 95C2

A

] a2

48
+ O(a3) (2.8)

γγ (a) = [16TFNf − 35CA]
a

48
+
[
280CATFNf − 449C2

A + 192CFTFNf

] a2

192
+ O(a3)

with the β-function

β(a) = −
[

11

3
CA − 4

3
TFNf

]
a2 −

[
34

3
C2

A − 4CFTFNf − 20

3
CATFNf

]
a3 + O(a4). (2.9)

The elementary group Casimirs are defined by

Tr(T aT b) = TFδ
ab, T aT a = CFI, f acdf bcd = CAδab. (2.10)

Whilst the higher order expressions are available, we only provide them at two loops as that
is the order we compute to here. In (2.5), we note that the renormalization of all fields
and parameters present is therefore already fixed, and hence after all contributing Feynman
diagrams have been computed and assembled the resulting vacuum expectation value is finite.
With a massive quark present, its mass will be renormalized in principle too. However, as it
first appears at two loops, scaling it from a bare to a renormalized parameter will not affect the
two-loop gap calculation as the counterterms from the quark mass renormalization constant
will only arise first at three loops.

As (2.5) is the vacuum expectation value of two fields, it is easy to determine since
essentially it is the closure of the legs on the mixed propagator of (2.6) and integrated over the
momentum p. Thus for higher loop calculations, one simply evaluates the relevant Feynman
diagrams which are merely vacuum bubbles with various configurations of masses. We devolve
to a later section the more detailed structure of such two-loop massive vacuum bubbles and
concentrate in the remainder of this section on more general aspects of the two-loop gap
equation calculation. The main ingredients are the generation of the Feynman graphs via
the QGRAF package [26] and its conversion into the symbolic manipulation language FORM

[27]. We use FORM as it is ideal for handling the underlying algebra in an efficient manner.
For the gap equation, due to the mixed propagators, there are 1 one-loop and 17 two-loop
Feynman diagrams to be determined exactly as a function of γ and mq . As they resolve into
the basic structure of two-loop vacuum bubbles, we note that to make contact with known
results we apply elementary partial fractions to the common factor in the propagators of the
Gribov-related fields, such as

p2

[(p2)2 + CAγ 4]
= 1

2

(
1

[p2 + i
√

CAγ 2]
+

1

[p2 − i
√

CAγ 2]

)
. (2.11)
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Moreover, within our FORM routines the Feynman rules are substituted automatically and
the elementary group theory is evaluated making extensive use of the Jacobi identity for the
structure functions, partly due to the form of the pure φab

μ propagator. Therefore, all that
remains in determining the gap equation for massive quarks is the substitution of the explicit
forms for the master Feynman integrals which the FORM routines produce. The following
section is devoted to this where we concentrate on the intricacies of dealing with vacuum
integrals with massive quarks and complex gluon masses.

3. Master integrals

There are two main scalar master integrals which arise in the computation. The first is the
massive one-loop vacuum bubble which is virtually trivial in comparison with that which we
have to consider at two loops. Though it does arise in the two-loop computation when a line
in the basic form of a two-loop vacuum bubble graph is omitted. Therefore, defining

I1(m
2) =

∫
k

1

[k2 + m2]
, (3.1)

where ∫
k

≡
∫

ddk

(2π)d
(3.2)

includes the d-dimensional momentum space measure, we have exactly

I1(m
2) = �

(
1 − 1

2d
)

(4π)d/2
(m2)

1
2 d−1, (3.3)

which is trivial to expand in powers of ε. Therefore, we now concentrate on the basic massive
scalar two-loop vacuum bubble which we define as

I2
(
m2

x,m
2
y,m

2
z

) =
∫

k

∫
l

1[
k2 + m2

x

] [
(k − l)2 + m2

y

] [
l2 + m2

z

] , (3.4)

which is completely symmetric in its arguments and has been studied extensively over the
years. See, for example, [28–30]. Its expansion in powers of ε, where d = 4 − 2ε, is known to
several orders but for our purposes it suffices to record it to the finite part. For this, we follow
the notation and conventions of [29]. Then we have

(4π)4I2(x, y, z) = − c

2ε2
− 1

ε

[
3c

2
− L1

]
− 1

2
[L2 − 6L1 + ξ(x, y, z) + c(7 + ζ(2))

+ (y + z − x) ln(y) ln(z) + (z + x − y) ln(z) ln(y)

+ (y + x − z) ln(y) ln(x)] + O(ε), (3.5)

where we define

Li = x ln
i
(x) + y ln

i
(y) + z ln

i
(z)

c = x + y + z (3.6)

a = 1
2 [x2 + y2 + z2 − 2xy − 2xz − 2yz]1/2.

We also use the same notation as [29] in defining

ln(m2) = ln

(
m2

μ2

)
, (3.7)

where μ is the mass scale which enters when using dimensional regularization to ensure that
the coupling constant remains dimensionless in d-dimensions. The key part of this ε expansion

6
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is the function ξ(x, y, z) whose explicit form depends on the sign of the combination of masses
denoted by a2. For our purposes, we note that for a2 > 0 [29]

ξ(x, y, z) = 8a[M(φz) + M(φy) − M(−φx)], (3.8)

where

M(φ) = −
∫ φ

0
dθ ln(sinh(θ)) (3.9)

and

φx = coth−1

[
c − 2x

2a

]
. (3.10)

Moreover, we note that

coth−1(z) = 1

2
ln

[
z + 1

z − 1

]
, (3.11)

and the integral defined by the intermediate function M(φ) can be written in terms of known
functions:

M(φ) = φ ln(2) − 1
2φ2 + 1

2ζ(2) − Li2(e−φ) − Li2(−e−φ), (3.12)

where Li2(z) is the dilogarithm function [31]:

Li2(z) = −
∫ z

0

ln(1 − x)

x
dx (3.13)

and ζ(z) is the Riemann zeta function. As an exercise to aid the interested reader, it is
instructive to consider the elementary case I2(0, 0,m2) which is explicitly

I2(0, 0,m2) =
∫

k

∫
l

1

k2(k − l)2[l2 + m2]
. (3.14)

It can be evaluated directly and then compared with (3.5) to give

I2(0, 0,m2) = − m2

2ε2
− m2

2ε
[3 − 2 ln(m2)] − m2

2
[7 + 3ζ(2) + 2 ln

2
(m2) − 6 ln(m2)] + O(ε),

(3.15)

which will be required for checking our expressions in the massless quark limit.
However, as we are ultimately interested in the massive quark case, we have to consider

several master integrals. These are

I2
(
m2

q,m
2
q, i
√

CAγ 2
) =

∫
k

∫
l

1[
k2 + m2

q

] [
(k − l)2 + m2

q

]
[l2 + i

√
CAγ 2]

I2
(
m2

q,m
2
q,−i

√
CAγ 2) =

∫
k

∫
l

1[
k2 + m2

q

] [
(k − l)2 + m2

q

]
[l2 − i

√
CAγ 2]

(3.16)

and the related integrals

Ī2
(
m2

q,m
2
q, i
√

CAγ 2
) =

∫
k

∫
l

1[
k2 + m2

q

] [
(k − l)2 + m2

q

]
[l2 + i

√
CAγ 2]2

Ī2
(
m2

q,m
2
q,−i

√
CAγ 2

) =
∫

k

∫
l

1[
k2 + m2

q

] [
(k − l)2 + m2

q

]
[l2 − i

√
CAγ 2]2

.

(3.17)

We concentrate on the former two as the definition of the latter follows from using elementary
calculus. For the first, we will focus on

ξ
(
i
√

CAγ 2,m2
q,m

2
q

) = 8a
[
2M

(
φm2

q

)− M(−φi
√

CAγ 2)
]
, (3.18)

7
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where now

a = i

2

√
CAγ 4 + 4i

√
CAγ 2m2

q, c = i
√

CAγ 2 + 2m2
q, (3.19)

leading to the intermediate variables

φi
√

CAγ 2 = coth−1

⎡
⎣ −√

CAγ 2 − 2im2
q√

CAγ 4 + 4i
√

CAγ 2m2
q

⎤
⎦

φm2
q
= coth−1

⎡
⎣ √

CAγ 2√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦ .

(3.20)

For practical purposes, it is more appropriate to re-express these by applying the logarithm
definition

e
−φ

i
√

CAγ 2 =
√

CAγ 2 +
√

CAγ 4 + 4i
√

CAγ 2m2
q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

e
−φ

m2
q =

√√√√√√
√

CAγ 2 −
√

CAγ 4 + 4i
√

CAγ 2m2
q

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

.

(3.21)

These naturally lead to the two functions

M
(
φm2

q

) = ζ(2)

2
+

1

2
ln

⎡
⎣

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦ ln(2)

− 1

8
ln2

⎡
⎣

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦

− 1

2
Li2

⎡
⎣

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦ (3.22)

and

M(−φi
√

CAγ 2) = ζ(2)

2
+ ln

⎡
⎣

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦ ln(2)

− 1

2
ln2

⎡
⎣

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦

− Li2

⎡
⎣

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦

− Li2

⎡
⎣
√

CAγ 4 + 4i
√

CAγ 2m2
q − √

CAγ 2

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦ , (3.23)
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where we have used the relationship [31]

Li2(x) + Li2(−x) = 1
2 Li2(x

2). (3.24)

Remarkably, this leads to the compact expression

ξ
(
i
√

CAγ 2,m2
q,m

2
q

) = 4i
√

CAγ 4 + 4i
√

CAγ 2m2
q

×
⎡
⎣ζ(2)

2
+

1

4
ln2

⎡
⎣

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦

+ Li2

⎡
⎣
√

CAγ 4 + 4i
√

CAγ 2m2
q − √

CAγ 2

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦
⎤
⎦ , (3.25)

giving the integral to the finite part

I2
(
m2

q,m
2
q, i
√

CAγ 2
) = − 1

2ε2

(
i
√

CAγ 2 + 2m2
q

)
− 1

ε

(
1

2

(
3i
√

CAγ 2 + 6m2
q

)− 2m2
q ln

(
m2

q

)− i
√

CAγ 2 ln(i
√

CAγ 2)

)

−m2
q ln

2(
m2

q

)− 1

2
i
√

CAγ 2 ln
2
(i
√

CAγ 2) + 6m2
q ln

(
m2

q

)
+ 3i

√
CAγ 2 ln(i

√
CAγ 2) − 2i

√
CAγ 4 + 4i

√
CAγ 2m2

q

×
⎡
⎣ζ(2)

2
+

1

4
ln2

⎡
⎣

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦

+ Li2

⎡
⎣
√

CAγ 4 + 4i
√

CAγ 2m2
q − √

CAγ 2√
CAγ 4 + 4i

√
CAγ 2m2

q +
√

CAγ 2

⎤
⎦
⎤
⎦− 1

2

(
i
√

CAγ 2 + 2m2
q

)
(7 + ζ(2))

− 1

2

(
2m2

q − i
√

CAγ 2
)
ln
(
m2

q

)− i
√

CAγ 2 ln
(
m2

q

)
ln(i

√
CAγ 2) + O(ε). (3.26)

We have checked that this expression correctly reduces to that for I2(0, 0, i
√

CAγ 2) in the
limit m2

q → 0. This is not as straightforward as it seems due to the presence of the dilogarithm

function and terms involving ln
(
m2

q

)
. Disregarding all terms proportional to m2

q and expanding√
CAγ 4 + 4i

√
CAγ 2m2

q in powers of m2
q , then I2

(
m2

q,m
2
q, i

√
CAγ 2

)
reduces to

I2
(
m2

q,m
2
q, i
√

CAγ 2
)= − i

√
CAγ 2

2ε2
− i

√
CAγ 2

ε

(
3

2
− ln(i

√
CAγ 2)

)
− 1

2
i
√

CAγ 2 ln
2
(i
√

CAγ 2)

+3i
√

CAγ 2 ln(i
√

CAγ 2) − i
√

CAγ 2

[
ζ(2) + 2 Li2

[
im2

q√
CAγ 2

]

+
1

2

[
ln

2
(i
√

CAγ 2) − 2 ln(i
√

CAγ 2) ln
(
m2

q

)
+ ln

2(
m2

q

)]]

− i
√

CAγ 2

2
(7 + ζ(2)) +

i
√

CAγ 2

2
ln

2(
m2

q

)
− i
√

CAγ 2 ln
(
m2

q

)
ln(i

√
CAγ 2) + O

(
m2

q; ε
)
, (3.27)
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where we note that the imaginary dilogarithm vanishes as m2
q → 0 and the remaining

logarithmic terms in m2
q cancel. By making the analytic continuation m2 → i

√
CAγ 2 in (3.15),

we see that our integral I2
(
m2

q,m
2
q, i

√
CAγ 2

)
is entirely consistent with I2(0, 0, i

√
CAγ 2) in

the limit of zero quark mass.
Next, we turn to the complex conjugate integral and focus on

ξ
(−i

√
CAγ 2,m2

q,m
2
q

) = 8a
[
2M

(
φm2

q

)− M
(−φ−i

√
CAγ 2

)]
, (3.28)

where now the variables are

a = i

2

√
CAγ 4 − 4i

√
CAγ 2m2

q, c = 2m2
q − i

√
CAγ 2 (3.29)

leading to

e
−φ

i
√

CAγ 2 =
√

CAγ 2 +
√

CAγ 4 + 4i
√

CAγ 2m2
q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

e
−φ

m2
q =

√√√√√√
√

CAγ 2 −
√

CAγ 4 + 4i
√

CAγ 2m2
q

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

.

(3.30)

Without reproducing analogous manipulations, we find

ξ
(−i

√
CAγ 2,m2

q,m
2
q

) = 4i
√

CAγ 4 − 4i
√

CAγ 2m2
q

×
⎡
⎣ζ(2)

2
+

1

4
ln2

⎡
⎣

√
CAγ 2 −

√
CAγ 4 − 4i

√
CAγ 2m2

q

√
CAγ 2 +

√
CAγ 4 − 4i

√
CAγ 2m2

q

⎤
⎦

+ Li2

⎡
⎣
√

CAγ 4 − 4i
√

CAγ 2m2
q +

√
CAγ 2√

CAγ 4 − 4i
√

CAγ 2m2
q − √

CAγ 2

⎤
⎦
⎤
⎦ . (3.31)

Whilst this is similar to ξ
(
i
√

CAγ 2,m2
q,m

2
q

)
, there is a potential singularity in the massless

quark limit arising from the dilogarithm term. To circumvent this and to have a final
expression for the integral I2

(−i
√

CAγ 2,m2
q,m

2
q

)
which is clearly the complex conjugate

of I2
(
i
√

CAγ 2,m2
q,m

2
q

)
, we use the dilogarithm identity [31]

Li2(−1/z) + Li2(−z) = −ζ(2) − 1
2 ln2(z) (3.32)

with

z = −
⎡
⎣
√

CAγ 4 − 4i
√

CAγ 2m2
q − √

CAγ 2√
CAγ 4 − 4i

√
CAγ 2m2

q +
√

CAγ 2

⎤
⎦ . (3.33)

Given this, we end up with the final expression

I2
(−i

√
CAγ 2,m2

q,m
2
q

) = − 1

2ε2

(
2m2

q − i
√

CAγ 2
)

− 1

ε

[
1

2

(
6m2

q − 3i
√

CAγ 2
)− 2m2

q ln
(
m2

q

)
+ i
√

CAγ 2 ln(−i
√

CAγ 2)

]

−m2
q

(
ln
(
m2

q

))2
+

1

2
i
√

CAγ 2(ln(−i
√

CAγ 2))2

10
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+ 6m2
q ln

(
m2

q

)− 3i
√

CAγ 2 ln(−i
√

CAγ 2) + 2i
√

CAγ 4 − 4i
√

CAγ 2m2
q

×
⎡
⎣ζ(2)

2
+

1

4
ln2

⎡
⎣

√
CAγ 2 −

√
CAγ 4 − 4i

√
CAγ 2m2

q

√
CAγ 2 +

√
CAγ 4 − 4i

√
CAγ 2m2

q

⎤
⎦

+ Li2

⎡
⎣
√

CAγ 4 − 4i
√

CAγ 2m2
q − √

CAγ 2√
CAγ 4 − 4i

√
CAγ 2m2

q +
√

CAγ 2

⎤
⎦
⎤
⎦

− 1

2

(
2m2

q − i
√

CAγ 2
)
(7 + ζ(2)) − 1

2

(
2m2

q + i
√

CAγ 2
)
ln

2(
m2

q

)
+ i
√

CAγ 2 ln(m2
q) ln(−i

√
CAγ 2) + O(ε). (3.34)

Comparing this with our expression (3.26), we see that the explicit forms of
I2
(
i
√

CAγ 2,m2
q,m

2
q

)
and I2

(−i
√

CAγ 2,m2
q,m

2
q

)
are indeed complex conjugates as expected

from their original definitions. This is an important check on our manipulations and use of
dilogarithm identities and ensure that the correct massless quark limits will emerge which is
important for checking our eventual gap equation.

The remaining two master integrals (3.17) can be simply deduced from the above
expressions by differentiating with respect to γ 2. As this is elementary, we merely note
that the explicit expression for the first of (3.17) is

Ī2
(
i
√

CAγ 2,m2
q,m

2
q

) = 1

2ε2
− 1

ε

(
ln(i

√
CAγ 2) − 1

2

)
+

1

2
ln

2
(i
√

CAγ 2) − 5 ln(i
√

CAγ 2)

+
1

2
+

ζ(2)

2
+ 2iπ − 1

2
ln

2(
m2

q

)
+ ln

(
m2

q

)
ln(i

√
CAγ 2) − 4 ln(2)

+

⎡
⎣
(
2
√

CAγ 2 + 4im2
q

)√
CAγ 4 − 4i

√
CAγ 2m2

q√
C2

Aγ 8 + 16
√

CA
2
γ 4m4

q

⎤
⎦

×
⎡
⎣ζ(2)

2
+

1

4
ln2

⎡
⎣

√
CAγ 2 +

√
CAγ 4 + 4i

√
CAγ 2m2

q

√
CAγ 2 −

√
CAγ 4 + 4i

√
CAγ 2m2

q

⎤
⎦

+ Li2

⎡
⎣
√

CAγ 4 + 4i
√

CAγ 2m2
q − √

CAγ 2√
CAγ 4 + 4i

√
CAγ 2m2

q +
√

CAγ 2

⎤
⎦
⎤
⎦

+ 4 ln
[√

CAγ 2 +
√

CAγ 4 + 4i
√

CAγ 2m2
q

]
+ O(ε), (3.35)

where we have used

d

dz
Li2(z) = − ln(1 − z)

z
. (3.36)

Again, we have checked that the correct massless quark limit emerges with the direct evaluation
of the equivalent integral.

Whilst we have now determined all the master integrals to the finite part in the ε expansion,
the explicit expressions are not in a fully useful format. Given that the ultimate gap equation
is a real function, we need to write the expressions as a real and imaginary part. This is not a
simple exercise due to the presence of the dilogarithm of a complex argument. However, the
theory behind such functions is known [31], and we summarize what we require for the current
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calculation. Writing the complex variable z in polar form, we have the real and imaginary
parts [31]:

Li2(r eiθ ) = Li2(r, θ) + i
[
ω ln(r) + 1

2 Cl2(2ω) + 1
2 Cl2(2θ) − 1

2 Cl2(2ω + 2θ)
]
, (3.37)

where

Li2(r, θ) = −1

2

∫ r

0

ln(1 − 2x cos θ + x2)

x
dx (3.38)

and Cl2(θ) is the Clausen function defined by

Cl2(θ) = −
∫ θ

0
ln

[
2 sin

(
φ

2

)]
dφ. (3.39)

The intermediate angle ω is related to the polar variables r and θ of z by

ω = tan−1

(
r sin θ

1 − r cos θ

)
. (3.40)

Given these general definitions then to proceed with our simplification to real and imaginary
parts, we need to write the arguments of the dilogarithms in polar forms. To assist this we
recall the elementary lemma for a complex variable z = a + ib, where a and b are real:

√
a ± ib = 1√

2

√√
a2 + b2 + a ± i√

2

√√
a2 + b2 − a. (3.41)

So, for example,√
CAγ 4 + 4i

√
CAγ 2m2

q = 1√
2

√√
C2

Aγ 8 + 16CAγ 4m2
q + CAγ 4

+
i√
2

√√
C2

Aγ 8 + 16CAγ 4m2
q − CAγ 4. (3.42)

For the dilogarithms if we set

r eiθ ≡
√

CAγ 4 + 4i
√

CAγ 2m2
q − √

CAγ 2√
CAγ 4 + 4i

√
CAγ 2m2

q +
√

CAγ 2
, (3.43)

then

r eiθ =

√
C2

Aγ 8 + 16CAγ 4m2
q − CAγ 4 + i

√
2
√

CAγ 2

√√
C2

Aγ 8 + 16CAγ 4m2
q − CAγ 4

√
C2

Aγ 8 + 16CAγ 4m2
q + CAγ 4 +

√
2
√

CAγ 2

√√
C2

Aγ 8 + 16CAγ 4m2
q + CAγ 4

,

(3.44)

giving

r = 4
√

CAγ 2m2
q√√

C2
Aγ 8 + 16CAγ 4m2

q + CAγ 4
(√

2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m2
q + CAγ 4

)
tan θ =

√
2
√

CAγ 2√√
C2

Aγ 8 + 16CAγ 4m2
q − CAγ 4

. (3.45)

In what follows, we will always regard r and θ as taking these values with the associated
corresponding value of ω. Although the dilogarithm is the most involved of the terms
which appear in the finite parts, similar manipulation is required for several of the logarithm
terms. Collecting all the pieces together, we find the following expression written as real and

12
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imaginary parts:

I2
(
i
√

CAγ 2,m2
q,m

2
q

) = − 1

2ε2

(
i
√

CAγ 2 + 2m2
q

)− 1

ε

(
1

2

(
3i
√

CAγ 2 + 6m2
q

)− 2m2
q ln

(
m2

q

)
− i
√

CAγ 2 ln(i
√

CAγ 2)

)
− m2

q ln
2(

m2
q

)− 1

2
i
√

CAγ 2 ln
2
(i
√

CAγ 2)

+ 6m2
q ln

(
m2

q

)
+ 3i

√
CAγ 2 ln(i

√
CAγ 2) −

√
2i

√√
C2

Aγ 8 + 16CAγ 4m2
q + CAγ 4

×

⎡
⎢⎢⎣1

4

⎡
⎢⎢⎣1

2
ln
(√

C2
Aγ 8 + 16CAγ 4m4

q + CAγ 4
)

× ln
(√

2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

)

+ 2i tan−1

⎡
⎢⎢⎣

√√
C2

Aγ 8 + 16CAγ 4m4
q − CAγ 4

√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

⎤
⎥⎥⎦

− 2 ln(2) +
1

2
iπ − ln(

√
CAγ 2) − ln

(
m2

q

)
+

ζ(2)

2

⎤
⎥⎥⎦

2

+ Li2(r, θ)

+ iω

[
2 ln(2) +

1

2
ln(CAγ 4) + ln

(
m2

q

)− 1

2
ln
(√

C2
Aγ 8 + 16CAγ 4m4

q + CAγ 4
)

− ln
(√

2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

)]

+
i

2
Cl2(2ω) +

i

2
Cl2(2θ) − i

2
Cl2(2ω + 2θ)

⎤
⎥⎥⎦

+
√

2

√√
C2

Aγ 8 + 16CAγ 4m2
q − CAγ 4

×

⎡
⎢⎢⎣1

4

⎡
⎢⎢⎣1

2
ln
(√

C2
Aγ 8 + 16CAγ 4m4

q + CAγ 4)

× ln
(√

2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

)

+ 2i tan−1

⎡
⎢⎢⎣

√√
C2

Aγ 8 + 16CAγ 4m4
q − CAγ 4

√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

⎤
⎥⎥⎦
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− 2 ln(2) +
1

2
iπ − ln(

√
CAγ 2) − ln

(
m2

q

)
+

ζ(2)

2

⎤
⎥⎥⎦

2

+ Li2(r, θ)

+ iω

[
2 ln(2) +

1

2
ln(CAγ 4) + ln

(
m2

q

)− 1

2
ln
(√

C2
Aγ 8 + 16CAγ 4m4

q + CAγ 4
)

− ln
(√

2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

)]

+
i

2
Cl2(2ω) +

i

2
Cl2(2θ) − i

2
Cl2(2ω + 2θ)

]
− 1

2

(
i
√

CAγ 2 + 2m2
q

)
(7 + ζ(2)) − 1

2

(
2m2

q − i
√

CAγ 2
)
ln

2(
m2

q

)
− i
√

CAγ 2 ln
(
m2

q

)
ln(i

√
CAγ 2) + O(ε). (3.46)

Whilst this is not truly of the form a + ib since not all terms have been fully multiplied out
and there are logarithms with purely imaginary arguments, we prefer to leave it in this more
compact form since, for instance, it is elementary to implement

ln(i
√

CAγ 2) = ln(
√

CAγ 2) +
iπ

2
(3.47)

within our FORM routines. This also takes care of the other elementary complex algebra
automatically.

4. Two-loop gap equation

Equipped with the basic master integrals, we are now in a position to assemble the two-loop
Gribov gap equation in the MS scheme with massive quarks. This requires the evaluation
of the 17 contributing Feynman diagrams which without the power of FORM would have
been virtually impossible. Having already discussed the key aspects of the computation, we
ultimately find

1 = aCA

[
5

8
− 3

8
ln

(
CAγ 4

μ4

)]
+ a2

(√
CATFNf m2

q

γ 2

)[
4ω +

π

2

]

+ a2

[
C2

A

[
2017

768
− 11097

2048
s2 +

95

256
ζ(2) − 65

48
ln(CAγ 4)

+
35

128

(
ln(CAγ 4)

)2
+

1137

2560

√
5ζ(2) − 205π2

512

]

+ CATFNf

[
2 ln(2) − 25

24
+

1

2
ln

2(
m2

q

)− 1

2
ln
(
m2

q

)
ln(CAγ 4)

+
19

12
ln(CAγ 4) − ln

[√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

− ln

[√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]
+

π2

8

]]

+ a2

√√
C2

Aγ 8 + 16CAγ 4m2
q + CAγ 4

(√
CATFNf√

2γ 2

)
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×
[
−ζ(2)

4
− 1

2
ln2(2) − 1

2
ln(2) ln

(
m2

q

)− 1

4
ln(2) ln(CAγ 4)

+
1

2
ln(2) ln

[√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 2m4
q + CAγ 4

]

+
1

2
ln(2) ln

[√√
C2

Aγ 8 + 16CAγ 2m4
q + CAγ 4

]
− 1

8
ln

2(
m2

q

)− 1

8
ln
(
m2

q

)
ln(CAγ 4)

+
1

4
ln
(
m2

q

)
ln

[√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]
− 1

32
ln

2
(CAγ 4)

+
1

8
ln(CAγ 4) ln

[√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

− 1

8
ln

2

[√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

+
1

4
ln
(
m2

q

)
ln

[√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

+
1

8
ln(
√

CAγ 2) ln

[√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

− 1

4
ln

[√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

× ln

[√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

− 1

8
ln

2

[√√
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Aγ 8 + 16CAγ 4m4
q + CAγ 4

]
+

π
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ω +
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]

+ a2

⎡
⎢⎢⎣
√√
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Aγ 8 + 16CAγ 4m2

q + CAγ 4

√
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Aγ 8 + 16CAγ 4m4
q

⎤
⎥⎥⎦
(√
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q√

2γ 2

)

× [−ζ(2) − 2 ln2(2) − 2 ln(2) ln
(
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q

)− ln(2) ln(CAγ 4)

+ 2 ln(2) ln

[√
2
√

CAγ 2 +

√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

+ 2 ln(2) ln

[√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]
− 1

2
ln

2(
m2

q

)− 1

2
ln
(
m2

q

)
ln(CAγ 4)

+ ln
(
m2

q

)
ln

[√
2
√

CAγ 2 +

√√
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Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

− 1
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ln
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(CAγ 4) +

1

2
ln(CAγ 4) ln

[√
2
√
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√√
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]
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− 1
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√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4
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[√√
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[√√
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[√√
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[√√
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4
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√
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]

+
1
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+
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[√√
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]

+
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[√√
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]

− 1
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[√√
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× ln

[√
2
√
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]
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− 1

8
ln

2

[√√
C2

Aγ 8 + 16CAγ 4m4
q + CAγ 4

]
+

ω2

2
− 1

2
Li2(r, θ) +

πω
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+

π2
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]
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√√
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(√
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)
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4
ln(2) − π
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q
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π

8
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[√√
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]

+
π

8
ln

[√
2
√

CAγ 2 +

√√
C2
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]

+
1
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1
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⎡
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q

⎤
⎦

×
[
π ln(2) +

π

2
ln
(
m2

q

)
+

π

4
ln(CAγ 4) − 1

2
ln

[√√
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Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

− 1

2
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[√
2
√

CAγ 2 +

√√
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Aγ 8 + 16CAγ 4m4
q + CAγ 4

]

− Cl2(2θ) + Cl2(2θ + 2ω) − Cl2(2ω)]]

+ a2

⎡
⎢⎢⎣
√√

C2
Aγ 8 + 16CAγ 4m4

q − CAγ 4

√
C2

Aγ 8 + 16CAγ 4m4
q

⎤
⎥⎥⎦
(

(CA)3/2γ 2TFNf√
2

)

×
[

1

4
Cl2(2θ + 2ω) − 1

4
Cl2(2θ) − 1

4
Cl2(2ω) +

π

4
ln(2) +

π

8
ln
(
m2

q

)

+
π

16
ln(CAγ 4) − π

8
ln

[√√
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Aγ 8 + 16CAγ 4m4
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]

− 1

8
ln

[√
2
√

CAγ 2 +

√√
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Aγ 8 + 16CAγ 4m4
q + CAγ 4

]]
+ O(a3). (4.1)

This is a real expression and the main result of our paper. There are several checks. Whilst
we have been careful in checking that the four two-loop scalar master integrals reduce to the
correct expressions in the massless quark limit, the overall final gap equation must also satisfy
the same test. We note that (4.1) does do this and for completeness, note that one obtains

1 = CA

[
5

8
− 3

8
ln

(
CAγ 4

μ4

)]
a +

[
C2

A

(
2017

768
− 11097

2048
s2 +

95

256
ζ(2) − 65

48
ln

(
CAγ 4

μ4

)

+
35

128

(
ln

(
CAγ 4

μ4

))2

+
1137

2560

√
5ζ(2) − 205π2

512

)

+ CATFNf

(
−25

24
− ζ(2) +

7

12
ln

(
CAγ 4

μ4

)
− 1

8

(
ln

(
CAγ 4

μ4

))2

+
π2

8

)]
a2

+ O(a3), (4.2)

where s2 = (2
√

3/9)Cl2(2π/3) which was originally recorded in [15]. However, there is
another check on (4.1) which is to examine the Faddeev–Popov ghost two-point function in
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the zero momentum limit. As was noted in [1], there ought to be ghost enhancement which
equates to the Kugo–Ojima criterion being satisfied [32]. Formally writing the radiative
corrections to the Faddeev–Popov ghost two-point function as u(p2) then ghost enhancement
follows if u(0) = −1 which is the Kugo–Ojima condition. This was verified at two loops in the
massless quark case in [16]. Therefore, we have repeated that calculation here with massive
quarks and examined the zero momentum limit. This involves applying the vacuum bubble
expansion to the 31 contributing two-loop Feynman diagrams. The computation makes use of
the master integrals discussed in section 3 and we have used the same routines in order to do
the FORM identifications. The outcome is similar to [16]. In other words, the Kugo–Ojima
criterion is satisfied at two loops precisely when the two-loop massive quark Gribov gap
equation is satisfied. Indeed as emphasised in Zwanziger’s articles, the theory has no meaning
as a gauge theory unless this occurs. Therefore, we are confident that our result (4.1) is correct.

5. Discussion

We conclude with several observations. The inclusion of massive quarks in the Gribov–
Zwanziger approach has not affected the main properties of the Faddeev–Popov ghost
enhancement at two loops. Moreover, the one-loop verification of gluon suppression of [16]
is also unaffected with massive quarks. This is because at one loop, the diagrams involving
massive quarks do not arise in that part of the matrix of two-point functions responsible for
the vanishing of the gluon propagator in the infrared. It is worth noting that our original
expectation was that massive quarks would not upset these key properties of the Yang–Mills
fields. One of the main outcomes of the result (4.1) is the very much involved form which
is clearly due to the multi-scale nature of the underlying Feynman diagram. Whilst we have
concentrated on what is now known as the scaling solution [17–22] rather than the decoupling
solution, it does serve as an indication of what to expect if one were to study the same problem
in the latter case. For instance, within the Gribov–Zwanziger context [23, 24], the gluon
propagator acquires an additional mass scale deriving from the condensation of a mass for
the Zwanziger localizing ghost fields. Aside from giving three-scale two-loop integrals for
Feynman graphs without quarks, it will result in four scale two-loop integrals for the case we
studied in depth here. Clearly, that would be a difficult computation.
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